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Crest instabilities of gravity waves. 
Part 1. The almost-highest wave 
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It is shown theoretically that the crest of a steep, irrotational gravity wave, considered 
in isolation, is unstable. There exists just one basic mode of instability, whose 
exponential rate of growth p equals 0. 123(g/R)f, where g denotes gravity and R is the 
radius of curvature at the undisturbed crest. A volume of water near the crest is shifted 
towards the forward face of the wave; the ‘toe’ of the instability is at a horizontal 
distance 0.45R ahead of the crest. The instability may represent the initial stage of a 
spilling breaker. On small scales, the ‘toe’ may be a source of parasitic capillary waves. 

1. Introduction 
Despite much interest during the last twenty years, the problem of how and why 

gravity waves break in deep water has remained incompletely solved; for recent reviews 
see Longuet-Higgins (1988) and Banner & Peregrine (1993). 

As pointed out previously (Longuet-Higgins 1981), a breaking wave does not 
necessarily pass through the limiting configuration for steady, steep irrotational waves 
first calculated by Michell (1893), with a sharp angle of 120” at the crest (the ‘Stokes 
corner-flow ’). The actual flow being unsteady, this limiting configuration is by-passed, 
by a less or greater margin. Thus from observation it is found that the mean ratio H / L  
of height H to wavelength L in a breaking wave is usually less than the value 0.141 for 
limiting waves. The latter would correspond to a ‘steepness’ parameter ak = n H / L  = 

0.443. For breakers resulting from the fastest-growing Benjamin-Feir instability it is 
found that ak M 0.38 (see Longuet-Higgins & Cokelet 1978, figure 22(c)) .  In a typical 
sea-state, ak may lie between 0.05 and 0.20 (see Holthuijsen & Herbers 1986). 

The Benjamin-Feir instability also does not account for the marked horizontal 
asymmetry of steep waves prior to breaking (Kjeldsen & Myrhaug 1980; Bonmarin 
1990), although Tulin & Li (1991) have shown that this type of instability does produce 
an increased supply of energy to the forward face of the wave. 

The general approach of regarding the initial stages of wave breaking as being due 
to an instability of a steady flow is attractive, however. In the present paper we consider 
first the instability of a single, steep wave crest, as described by the theory of the 
‘ almost-highest ’ wave (Longuet-Higgins & Fox 1977, 1978). This theory describes the 
flow near the crest of any steady, irrotational wave having slightly less than the 
maximum height. The curvature of the surface profile is everywhere finite. In the ‘inner 
flow’ the surface slope tends to 120” in each direction. We here consider time- 
dependent perturbations of this flow. If the crest is perturbed by the addition of extra 
energy, how does the deformation develop? What are the normal modes of 
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perturbation? If any of the modes are unstable, which mode has the fastest rate of 
growth? How does this compare with observation? 

The method of analysis is similar to that developed earlier for periodic progressive 
waves in deep water (Longuet-Higgins 1978a, b). Here, however, it is applied to an 
isolated wave crest ; the lengthscales in the basic flow and its perturbations are assumed 
small compared to a wavelength L. As will be shown, there do indeed exist both time- 
periodic normal-mode perturbations and an exponentially growing normal mode, with 
a characteristic rate of growth. 

A further reason for interest in this problem may be mentioned. It is known that a 
steep, fairly short gravity wave, with wavelength of order 10 cm, can develop parasitic 
capillary waves on its forward face, leading sometimes to a ‘capillary bore’ (see 
Longuet-Higgins 1992). The question arises: how is such a bore initiated? Is it due to 
capillarity combined with the sharp curvature at the wave crest, as is currently believed, 
or does it arise from an instability of the gravity wave crest? 

The work will be presented in two papers. In the present paper, @2-4, we first 
describe an improved calculation of the inner flow, making use of some new relations 
corresponding to the quadratic relations between Stokes’s coefficients in periodic 
waves. In $45 and 6 we proceed to give a method for calculating the perturbations of 
the inner flow, and the corresponding results. These are discussed in Section 7. 

In a second paper (Longuet-Higgins, Cleaver & Fox 1994) we will describe the 
corresponding results when the lowest-order correction to the outer flow is included in 
the calculations. 

2. The almost-highest wave: definitions 
Consider a steady irrotational wave propagating to the left with speed c as in figure 

1. In a frame of reference moving with the phase speed the flow appears steady, and 
we may take rectangular coordinates (x,y) with the x-axis horizontal, the y-axis 
upwards and the origin 0 vertically above a wave crest, at such a distance that 
Bernoulli’s equation can be written, 

where p is the pressure, and q the particle speed. We have chosen the units of mass and 
time so that the density p and the acceleration due to gravity g are both unity. On the 

(2.2) free surface p = 0 we have then 

If c j  and $ denote the velocity potential and the stream function respectively, then on 
the free surface we may take 1c. = 0. Further writing z = i(x+iy) and 31 = $ + i ~  we 

p + y + @  = 0, (2.1) 

2y+$ = 0. 

(2.3) 

(2.4) 

have 

so that (2.2) becomes simply 
2y = -(z+z*), q 2  = x,x: = (z&)-l 

(z+z*)z,z,* = 1. 
For very steep waves the dimensionless parameter 

€ = q0jt /2c (2.5) 
becomes small, q,, being the particle speed at the crest (,y = 0). It was shown by 
Longuet-Higgins & Fox (1977, 1978) that as c + O  the flow near the wave crest tends 
asymptotically to a certain ‘inner solution’, described in Longuet-Higgins & Fox 
(1977, referred to herein as LHF1). As unit of length we may choose the vertical 
distance of the wave crest from the origin x = 0; see figure 1. Then at the crest 
(x = 0) we have 

y = - l  q =  40 = d2, (2.6) 
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FIGURE 1 .  Profile of the almost-highest wave, showing coordinates and the 30" asymptotes 
(from LHF1). 

by (2.2). For large values of z the inner flow tends to Stokes's 120" corner flow, 

To calculate the complete inner flow LHFl make the transformation 
z - (gix); as z + m .  (2.7) 

where p is a positive constant, and then suppose that inside the circle 1 0 1  = 1 (which 
corresponds to the fluid domain I,? < 0) the solution can be expressed in the form 

where S is a positive constant and 

is a power series in w with real coefficients B,. It is convenient to take S = p. To ensure 
that the free surface passes through the wave crest, where x = 0, w = 1, we must specify 
that 

Since the coefficients B, are all real, the flow will be symmetric about the line x = 0. 

z = (s+ i,y)i ~ ( w ) ,  (2-9) 

B(w) = B,+B,o+B,w'+ ... (2.10) 

B(1) = B,+B,+B,+ ... = Sf. (2.11) 

Now to satisfy the free-surface condition (2.4), we have from (2.9) 
zx = i(S+ ix)-iH(w), (2.12) 

where H(w)  = ~ B ( w )  - (1 + W )  B'(w) (2.13) 
and a prime denotes d/do. The boundary condition (2.4) then becomes 

[ d B ( w )  + 3B(w-')]  H(w) H(w-1) = 1, (2.14) 
to be satisfied on the circle IwI = 1 when 7 = arg w lies in the open interval (-x, n). 
Since w-i may be expanded in a Fourier series: 

where sin (n +f) 71 
K ,  = , n = 0, f 1 ,  f 2 ,  ..., 

(n + i) x 

(2.15) 

(2.16) 

we can substitute into the boundary condition (2.14) and by equating coefficients of 
c o s n ~  obtain an infinite set of cubic equations for the coefficients B,. 

In LHFl this system of equations was solved numerically, together with (2.10), 
taking 6 =  10;. On successive truncation of the system at increasing values of n a 
solution was found which converged satisfactorily. The profile of the free surface is 
plotted in figure 9 of LHFl.  



118 M .  S. Longuet-Higgins and R. P. Cleaver 

We shall now show how the system of cubic equations for the coefficients B, can 
with advantage be replaced by an equivalent set of quadratic equations. This not only 
enables the basic inner flow to be calculated with greater accuracy, but it considerably 
simplifies the analysis of the normal-mode perturbations, which is our present 
objective. 

3. Quadratic equations for the coefficients B, 
The boundary condition (2.14) can be written 

L(w) H(w) H(w-') = 1 on 101 = 1, 

where 

and 

oj 

L(0) = w - b ( o )  + wk(0-1)  = c L, On 
-m 

r/J 

H(o) = $B(o) - (1 + 0) B'(o) = C H ,  w,, 
n 

and since L(o) is real, L-, = L,. The coefficients L,, L,, . . . are linear combinations of 
the B, and are real also. 

Consider now the product 
r/J 

M(o) = L(w) H(o) = C M ,  o,, 
-m 

(3.5) 

say. The boundary condition (3.1) can be written 

N(w) = M(w) H(o>-l) = 1 on IwI = 1. (3.6) 
The coefficient N ,  of wn in N(o)  is a cubic function of the B,, formally identical to N-,, 
since N(o)  was constructed as a real function of w (N  is symmetric with regard to 7). 

So in order to satisfy (3.1) we have only to equate coefficients of the nan-negutiue 
powers of w in (3.6). This yields 

(3.7) 

i l  

M,H,+M,H,+M,H,+ ...+ M , H ,  +... = 1, 
MIHO+M,Hl+ ...+ M , H  ,-,+... = 0, 

M,H,+ ...+ M , H ,  -,+... = 0, 

M,H,+ ... = 0. 
If we truncate the system by assuming M ,  = 0 when n > m, say, we get a set of m linear 
equations for Mu, M-,, ..., M-, with matrix 

H, Hl H,  ... H ,  
0 H, Hl ... Hm-l 
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which has non-vanishing determinant HF. Thus (3.7) has the unique solution 

M ,  = l / H o ,  M I  = M ,  = ... = Mm = 0. (3.9) 

Allowing m to go to infinity we obtain an infinite set of equations which is quadratic 
in the B,. In fact from (3.5) we obtain 

(3.10) 1 I;, H ,  + L-,  Hl + L, H ,  + . . . = l/Ho, 
L,H,+L,  H,+L -, H,+ ... = 0, 
L,H,+L]H, +Lo H,+ ... = 0. 

Conversely it may be shown that any set of coefficients B,  satisfying the (mainly) 
quadratic system (3.10) also satisfies the cubic system (3.7) and hence the boundary 
condition. 

We remark that the coefficients hipl, , . . do not in general vanish. They are the 
coefficients in the expansion of l/H(wj in a series of negative powers of (r). 

The relations (3.10) are closely analogous to the quadratic relations found by 
Longuet-Higgins (1978 a) between the coefficients in Stokes's expansion for periodic 
waves in deep water. 

4. Recalculation of the inner solution 
Setting B, = 0 for n > N ,  say, the system of equations 

HOMO = 1, I 

were solved for B,, B,, ..., B, using Newton's method of approximation with a 
standard subroutine for matrix inversion. The set (4.1) may be solved much more 
speedily than the set obtained from (3.7). For N = 90, say. the values of B,. . . .. B,, 
agreed with the values given in LHF1, table 2, to all the quoted decimal places. The 
nature of the convergence of the B, is shown in figure 2, where In IBn;l is plotted against 
Inn for n = 1, . . ., 90. When 1 < n < 6 the coefficients decrease roughly like n P 8 .  When 
14 < n < 60 the even coefficients decrease like np4.4, as indicated. The change in power 
law comes at about n = 10. Until n = 29 (the same order as 8) all the coefficients 
after B, are negative. When n 2  30 they alternate in sign, with B, 2 0 as n is even or 
odd. After n = 30 the differences between odd and even values of IB,I diminish, and by 
n = 60 they are very small. Beyond n = 60 the decay is more rapid than a power law, 
and is possibly exponential. 

The series for B(w) and H(w) were checked by inserting them in the boundary 
condition (2.4). When N = 90, for example, the difference between the left- and right- 
hand sides was found to be less than 5 x lop5 for all IzI < 68.5 (the second crossing of 
the asymptote). If use was made of Pad6 approximants, based on either the odd or the 
even coefficients, the residuals were reduced to less than lop1'. The agreement with the 
asymptotic expressions for the outer part of the flow (see LHFl, 84j was even closer 
than that shown in figure 8 of LHFI. 

We proceed now to define and calculate the normal-mode perturbations to this flow. 
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In n 
FIGURE 2. Plot of In lBnl us. Inn when n = 1, ..., 90, showing the asymptotic behaviour of the 

coefficients. 

5. Small perturbations: method of approach 
To derive the equations governing small perturbations of the inner flow we use the 

general method introduced by Longuet-Higgins (1978b) which was applied there to the 
calculation of the normal-mode perturbations of a periodic Stokes wave. Thus if we 
take as independent variables the velocity potential q5 and the stream function ~ in the 
perturbed motion, together with the time t ,  the free surface may be specified by 

and the two boundary conditions (kinematic and dynamic) when transformed to the 
II. = F(q5, 0 (5.1) 

new variables become 
( Y g Y t + . V g X J  = (Y;+Y;)Y =; 

and 
respectively, to be satisfied when $ = F. We now write 

where X and Y represent the unperturbed flow and 5 and q are small perturbations of 
the same order as F. On substituting these expressions into (5.2) and (5.3), expanding 
in a Taylor series about $ = 0 thc lowest-order terms give 

as for the steady flow, and the terms of order P give 

(YkYt -Y$ X t )  = (Y; + Y;) 4 + [ I -  (Y,Y, +Y, 4 1  F) 

X = X(Ol9) + <($h II., t),  Y = Y($? $1 + v($4 +> 0, 

(5 .3)  

(5.4) 

2Y(Y$+ Y i )  = -1 (5 .5)  

Y&+ y,r, = (Y$+ y;)?1+2Y(y&+ y,v$)+[y(y;+ qr)I$p 
and qtt- y&$ = p$+(y;+ y;>F,, (5.7) 

(5 .6 )  

both equations to be satisfied on $ = 0. 
It is convenient to write 

5 = - q + i &  2 = - Y+iX. (5.8) 
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Then on subtracting i times (5.7) from (5.6) we have 
Z,*(Ct + iZx 4) = - $Zx Z,*((+ (*) - $(Z+ Z*) (Z,* Cx + Z, C;) 

+ $i [( Z + Z*) (Z,  Z,*, - Z; ZXx) + (Z: - Z,) Z, Z,;] F 

- iF4 (5.9) 
to be satisfied on Im(X) = 0. 

We now assume that the perturbation 5 may be expanded in a series of positive 
powers of w and that F may be expanded in a Fourier series on the unit circle: that is 

Q(w) = A( 1 + w)i [ ~ B ( w )  + w4B(w-l)] H(w-l), 
R(o) = A( 1 + w)i( 1 + w - l ) $ H ( w )  H(w-l), 
S(w) = Re [( 1 + w)  w-fH(w) H ( w - ' )  H ( w )  

00 a 

5 = (b, + ia,) wn, F = C (c, cos n7 + d, sin FIT), (5.10) 
n=o ,=0 

where a,, b,, c, and d, are time-dependent coefficients. As in Longuet-Higgins 
(1978b), we can always choose the origin of $ so that co = 0. 

To expand the boundary condition (5.9) in power series we write, following equation 
(2.101, 

(5.11) 

(5.12) 
where A = (26)5, H(w)  is given by (2.13) and 

For the perturbation 5 we write 
( = C(w), cx = - '  1 4 - 3 ( 1 +  w )  qw), (5.13) 

where E(o) = (1  + W) C'(W). (5.14) 
Then (5.9) becomes 

1 z = d2 (1 +w)-fB(w), 
zx = id-l(l+ w ) s ~ ( w ) ,  

zxx = ~ - ~ ( 1 +  w ) + ~ ( w ) ,  

G(w) = ~ B ( u )  -$( 1 + W )  B'(u) - (1 + w)'B"(o). 

c? 
?t 

- i ~ [P(w) C ( W )  - R(w) F(T) ]  = Re [Q(w) E(w) - R ( w )  C ( w ) ]  

\ 
where 

P(w) = P( 1 + w - l ) k ( w - l ) ,  

and so 
Q(w) = d(1 +&H(w) 

Q,  = 0 when FI < 0. 

(5.16) 

(5.17) 

(5.18) 

(5.19) 
(5.20) 

From their original forms in (5.15), R and S are symmetric functions of T ,  so 
R-, = R,, SP7& = S, (5.21) 
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m a: 

= R, + 2 C R,& cos nr, (5.22) 

free-surface conditions are retrieved from the real and imaginary 

S(r) = So + 2 C S,  cos n7. 
1 1 

(5.23) 

a -1m [P(o) C(w)] = Re [Q(u) E(w) - R(w) C(o)] + S(T) F(7), 
at 

d7.  
c? -(Re [P(m) C(w)] - R(7) F(7)) = - 2( 1 + cos 7) - 
at 

Equating coefficients of cosnr and sinn7 in each of these equations gives four 
simultaneous equations for the vector 

x = (ao, a,, ...; b,,b,, ...; cl, c,, ...; d,, d,, ...); (5.24) 
see the Appendix. These four equations all have real coefficients. We now seek normal- 
mode solutions in which a,& - p. Thus equations (5.23) yield a matrix equation of the 
form 

/?AX = Bx, (5.25) 
where A and B are matrices of infinite order. Truncating the vector x by setting 
B, = 0 when n > N ,  say, and letting a,, b,, c,, d, also vanish when n > N ,  we can 
choose (4N+ 2) of the equations (5.25) to determine a sequence of eigenfrequencies crj 
and the corresponding eigenvectors xj .  Further details are given in the Appendix. 

6. Results 
The computations were programmed in FORTRAN (double or quadruple 

precision), with the aid of a CLAMS library routine SGEEV for extracting the 
eigenvalues and eigenvectors of a real, non-symmetric square matrix, of order (2N+ 1) 
(see the Appendix). The lower eigenvalues, for N =  30(2)50 are shown in table 1. 
They appear to have converged reasonably well. No use has been made of Pad6 
approximants. 

As expected, there is one (double) root p = 0, for, from equations (A 7 )  and (A 11) 
of the Appendix, we see that the elements of the first column of A,, are all zeros. Hence 
by (A 1 )  and (A 2) there is a solution in which p = 0, a, + 0 and all the other 
coefficients vanish. This corresponds to a purely horizontal shift of the surface profile 
through a distance a,, without change of form. 

Table 1 shows further that p has just one positive value, corresponding to an 
exponential rate of growth. All the remaining eigenvalues p are pure imaginary, 
corresponding to oscillatory normal modes. 

The most interesting mode is clearly the exponentially growing mode. Table 1 shows 
that by N = 50 the corresponding value of p has converged effectively to 

/? = 0.0544 ... . (6.1) 
The form of this mode is shown in figures 3 and 4, at successive times t ,  illustrating 
the exponential growth. The stability consists of a forward displacement of the fluid, 
confined mainly to the wave crest. The displacement begins rather abruptly at the ‘toe’ 
of the instability, which is located on the forward face of the unperturbed wave. The 
location of the toe can be defined as the point of maximum upwards curvature of the 
perturbation profile. This occurs at a horizontal distance y = - 2.3 from the centreline. 
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FIGURE 3. Profile of the unstable mode P = 0.05442 at times t = 0, 10, and 20. The amplitude a 
at t = 0 is 0.01. 
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N 

30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

fP 
0.05452 
0.05447 
0.05444 
0.05443 
0.05442 
0.05442 
0.05442 
0.05442 
0.05443 
0.05443 
0.05444 

f Bl 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

f U z  

0.08000 
0.08026 
0.08045 
0.08058 
0.08068 
0.08075 
0.08081 
0.08086 
0.08090 
0.08093 
0.08097 

f 5 3  

0.26393 
0.26380 
0.26372 
0.26367 
0.26364 
0.26362 
0.26361 
0.26360 
0.26359 
0.26359 
0.26359 

f 8 4  

0.61308 
0.61313 
0.61316 
0.61318 
0.61320 
0.61321 
0.61322 
0.61 322 
0.61322 
0.61323 
0.61323 

i r5 
0.80706 
0.80701 
0.80698 
0.80697 
0.80696 
0.80695 
0.80695 
0.80694 
0.80694 
0.80694 
0.80694 

TABLE 1. Calculated growth rates P and eigenfrequencies B, = ig, for the lowest normal modes, 
when N = 30(2)50. 
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FIGURE 4. Close-up of the profile in figure 3. 
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FIGURE 5. As in figure 3, but at times t = 20, 25 and 30, indicating qualitatively the later 
development of the instability. 

The tangent to the unperturbed surface at this point makes an angle of 21" with the 
horizontal. 

It will be realized that the present analysis is valid for a small perturbation only. If 
the amplitude of the perturbation were increased, the theoretical profile would develop 
as in figure 5,  so that the crest would overturn. But one criterion for the validity of the 
perturbation expansion is that the corresponding perturbation in the surface slope 
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should not be too large. Thus figure 5 is at best a qualitative indication of the later 
development of the flow. A more realistic form is likely to be as in the rough analytic 
model given by Longuet-Higgins (1981, figures 7 and 12), in which the forward face of 
the wave has a finite concave curvature. A strong forwards jet can then erupt from the 
tip of the wave (see for example Longuet-Higgins & Cokelet 1976, 1978). However, 
these later, nonlinear shapes of the flow must be treated by different analytic models, 
or else by numerical time stepping. 

By reversing the sign of the eigenvector x in (5.24) we obtain a perturbation which 
has a toe on the rear face of the wave. Such instabilities are less often observed. This 
may be due to the fact that any small disturbances on the forward face of the wave are 
accentuated by orbital straining, whereas on the rear face they are diminished. The sign 
of the instability is that corresponding to an excitation of the forward face, rather than 
the rear face. 

The remaining eigenvalues in table 1 correspond to purely harmonic oscillations of 
the flow, without exponential growth. An example is shown in figure 6. This 
corresponds to a bound progressive wave superposed on the unperturbed flow, which 
is being swept backwards over the wave crest. Its relative phase speed is much smaller 
than the (backwards) velocity of the unperturbed flow, in the chosen frame of 
reference. 

Returning to the unstable of figure 3, we may convert the rate of instability to more 
practical units as follows. 

The radius of curvature at the crest of the unperturbed profile is 

R = 5.15 (6.2) 
in the present units (see LHF1, $9). From dimensional considerations, since the only 
physical constant involved is the acceleration due to gravity g ,  the rate of growth ,4' 
must be of the form 

where C is an absolute constant. In the present units g = 1, hence 
p = C(g/R)i, (6.3) 

C = 0.0544 x (5.15); = 0.123. (6.4) 
It can also be shown that the e-folding time of the instability is about two and a half 
times the time taken for a particle near the crest to traverse a diameter of the circle of 
curvature. 

In a progressive gravity wave of length 271, the ratio of the lengthscales is equal to 
6' (see LHF1, equation (2.4)) where e is the parameter defined by equation (2.5) above. 
The ratio of the timescales is therefore d, by Froude scaling. For such a gravity wave 
the ratio of p to the radian frequency CT of a wave of small amplitude is 

p,fa = 0.0544~ '. (6.5) 
Lastly, to relate c to the steepness parameter ak of the gravity wave, we have, from 

ak = 0.443 - 0 . 5 0 ~ ~  + O ( 2 ) ,  (6.6) 

so that 2 2Aak (6.7) 
where Aak denotes the difference between cck and its limiting value 0.4432. From (6.6) 
we then have 

/3/q = 0.0385(Auk)-i. (6.8) 
This shows that for very steep waves (if they are attainable) the rate of growth, on a 
fixed timescale, goes to infinity like (Aak)-i. 

equation (5.4) of LHF1, 



126 M .  S .  Longuet-Higgins and R .  P .  Cleaver 

0 

X 

10 

~ 10 0 10 
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FIGURE 6. Profiles of the neutrally stable mode m = 0.263 59 at four different phases. (a) crl = 0, 
(b) mt  = in, (c) nt = x, (d) fTl = 2x. 

7. Discussion 
The existence of an inherent instability in the crest of a steep gravity wave has 

important implications for the way in which two-dimensional gravity waves actually 
break. From our results it seems extremely unlikely that a steep wave will attain the 
Stokes limiting form; in practice it must topple over before that steepness is attained. 

In previous theoretical work on periodic, irrotational waves (Tanaka 1983 ; Longuet- 
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Higgins 1986) it was found that the lowest superharmonic perturbation became 
unstable at around ak = 0.4292, corresponding to the lowest energy maximum. The 
instability analysed in the present paper is very probably a limiting form of this same 
instability. To trace the connection requires that we consider the stability of a wave 
crest modified by an ‘outer flow’ corresponding to the rest of the wave, as was 
described in Longuet-Higgins & Fox (1978). We shall carry out this analysis in future 
work. The present paper has established that there is an instability which is essentially 
a local property of an isolated wave crest, and hence may occur in other types of wave, 
for example waves in finite depth, or in irregular seas. 

On a small scale, where surface tension forces become significant, there arises the 
interesting possibility that the true source for the parasitic capillary waves found on the 
forward face of a short gravity wave is not the sharp negative curvature at the gravity 
wave crest itself, as has been previously suggested, but rather the sharp (positive) 
curvature occurring at the ‘toe’ of the crest instability. This conclusion appears to be 
consistent with many careful observations of parasitic capillaries. A full analysis will 
involve the incorporation of surface tension into the boundary conditions. 

The present paper is based in part on Chapters 5 to 7 of R. P. C.’s PhD dissertation 
(Cleaver 198 1) ; the numerical calculations have been revised and extended by 
M. S. L.-H. who is indebted to Jon Wright for advice on eigenvector subroutines. 
The work has been supported by the Office of Naval Research under Contract 
NO00 14-9 1-J- 1582. 

Appendix. Calculation of the eigenvalues 

x into two halves. Thus if we write 
It will be seen that the order of equation (5.25) can be reduced by splitting the vector 

u = ( 0 0 ,  a,, . . - 3  aN ; 4 ,  dz, . . - 3  &), u = (bo, b,, . . ., b, ; ~ 1 ,  ~ 2 ,  . . -, c,V) 

PAll u = A,, U, PA,, u = A,, U, 

(A 1) 

(A 2) 

equation (5.25) becomes 

where A,, denotes the matrix derived from the terms proportional to cos n7 in the first 
of the two equations (5.22), together with the terms proportional to sinnr in the second 
equation, and so on. 

Thus we can write 

and similarly 

(A 4) sinnr I ’ Re [Q(w) E(w) - R(w) C(w)] + S(7) F(T), i, cos n7 
- 2( 1 + cos 7) dF/dr, 

(A 6) 
- 2( 1 + cos 7) d F / d ~  t, cos n7 

A2.:{ Re [Q(w) E(w) - R(w) C(w)] + S(r) F(7), sin n7 



128 M .  S .  Longuet-Higgins and R. P. Cleaver 

where n runs from 1 to N .  In the case n = 0 it is convenient to take the constant in the 
Fourier series to be f rather than 1. This multiplies the corresponding coefficients 
by 2. 

In this way we find 
pi+) : Q-R(+) : S(+) 

A, ,=  (+ ; ;:)> A,,= ( 0 ; - ) >  (A71 

p(+) : _R(+) 0 ' 
A,, = ( ... ; .o ) , A,, = ( ... IJ), (A8) 

- pc-1 - Q'-Ri-) : 

where in the case N = 3, for example, 

(A 9) 

(A 10) 1 i (P-, - P3) (P-, - P,) (P-5 - PI) (P 6 - Po) 

1 i 

1 
1 

(Po + P") (P-, + P-,) (P,  + P,) (e, + P-3) 
(P-, + P,) (P ,  + P") (P-, + P-1) (P-4 + P-2) 

(P- 2 + P2) (P, + PI) (P-4 +Po) (P-5 + p-1) ' 

(P-, + P,) (P, + P,) (P-5 + PI) (P-6 + Po) 

(P-, - P,) (P-2 -Po) (P-3 - e l )  (P-4 - P-2) 

P(-) = (P-, - P,) (P-, - PI) (P-, - Po) (P ,  - P,) 

O*(Q,+Q,) 2(Q-,+Q& 4(Q-,+Q-i) 6(Q-,+Q-J 

0. (Q, + QJ * (Q1+ Q J  2(Qo + Q J  3(Q-1+ QJ 

( p(+) = 

and 

. (A 11) O.(Q, +Q,) l-(Q,+Q,> 2(Q-,+Q,> 3(Q-,+Q-,> 

0 -  (Q, + Q,) 1 - (Q, + Q,) 2(Q, + QJ 3(Q0 + Q1) 

Q = (  

Q' is the same as Q but without the first row. Also R(+) is similar to P(+) but without 
the first column while 

(R-, - R,) (R-, - R,) (R-, - R-1) (R-4 - R-2) 

(R-, - R,) (K, - R,) ( R L  - R,) (R-6 -Ro) 

(S-, - So) (S- ,  -S-J (S, - s-,I 
(&- S,) (K4 - So) (L5 - S,) 
(K4 - S,) (X, - S,) (S-6 - So) 

R(-) = (R-, -R2)  (K, - R,) (K4 - R,) (R-5 - R-1) ' (A 12) 

(A 13) 

R- denotes Ri-) without the first column. Then S(+) is similar to R(+),  while 

Lastly, 

2 0 0  

J =  (2 1 4 3 '  ') 
0 2 6  

while J' is the same as J but without the first row. Note that the first rows of J and 
0 are double the values corresponding to the pattern in the matrices as a whole. 

From (A 2) one obtains immediately 
PU = B, V ,  PV = B,u, (A 15) 
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where B, = A;: A,, and B, = A;; AZZ. Whence 
p"u = B, B,u. 

det (B, B, - A/) = 0. 

(A 16) 

(A 17) 

Therefore h = /3' is a root of the eigenvalue equation 

For a given order N of truncation, the matrix B, B, has (2N+ I )  rows and columns, 
half the number corresponding to the matrices in (5.23). We can therefore expect 
improved accuracy and speed of solution. at a given value of A'. 
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